
Griess test protocol	
Written by: Duha Al-Awad	Date: 25 th April 2019
Approved by: Dr. Susu Zughaier	Protocol Number: P001

Background:

Nitric oxide is an important messenger molecule that is released during several different physiological & pathological processes. Nitric oxide is unstable and breaks down into stable nitrates and nitrites few seconds after its release. The Griess test (named after Peter Griess) detects the presence of nitrite ions (NaNO₂) in a solution, therefore, it is an indirect measurement of nitric oxide release. The Griess reaction is a diazotization reaction, where a diazonium salt is formed from the reaction between sulfanilamide and nitrite present in the sample. The diazonium salt is then complexed with an azo dye to from a colorful azo compound (pink).

Reagents: 1% Orthophosphoric acid Sulfanilamide Sodium nitrite N-(1-Naphthyl)ethylene diamine dihydrochloride ACS (NED)

Materials:

96-well plate Multichannel pipette 200 uL pipettes Aluminum foil 50mL conical tube

Reagent preparation:

Reagent A: 1g sulfanilamide in 100 mL of 1% orthophosphoric acid (to make Sulphanilic acid) Reagent B: N-(1-Naphthyl)ethylene diamine dihydrochloride: 0.1g NED in 100mL distilled H₂O Working solution: mix equal volumes of reagent A & B in a dark bottle. Store at 4°C for later use. *It is preferable to mix reagents A & B right before use.

Standards Preparation:

- 1. To prepare a stock of **1M** NaNO2 standard measure 0.69g of NaNO2 to 10mL distilled water and vortex until the NaNO3 dissolves completely in the water.
- 2. From the 1M stock, dilute the solution to 100 μ M in two steps:
 - a. Add 10 μ L (of 1M NaNO2 stock) in 990 μ L of distilled water to get a concentration of **10 mM** (0.01M).
 - b. Add 10 μ L (from the 10 mM intermediate solution) in 990 distilled water to get a final concentration of **100 \muM** (0.10mM).

Procedure:

- 1. Allow reagents to come to room temperature (15-30 mints incubation at RT).
- 2. Add 100 uL of each standard.
- 3. Add 100 uL of sample for neat runs. Add 50 uL of media and 50 uL of sample to dilute the samples by a factor of 1/2. *Multiply the result of the diluted samples by the dilution factor '2'.
- 4. Add 100 uL of the working solution to each well.
- 5. Blank contains media & Griess reagent only.
- 6. Read the absorbance at **540nm** within 30 mints
- 7. Construct a standard curve and find the unknown values.

*Nitrates (NO₃) can be enzymatically converted to nitrites (NO₂), however, the benefit is minimal, and hence it is not performed.

Storage Conditions:

Reagent	Storage
1% Orthophosphoric acid (solution)	Room temperature
Sulfanilamide (powder)	Room temperature
Sodium nitrite (powder)	Room temperature
N-(1-Naphthyl)ethylene diamine dihydrochloride ACS (NED) (powder)	Room temperature & protected from light
Sulfanilamide in orthophosphoric acid (soluble)	2-4 °C
N-(1-Naphthyl)ethylene diamine dihydrochloride ACS (NED) (soluble)	2-4 °C & protected from light

Hazards:

Reagent	Hazard
Sodium nitrite	None

Sulfanilamide	May cause fire or explosion; strong oxidizer.
	Toxic if swallowed.
	Very toxic to aquatic life.
N-(1-Naphthyl)ethylene diamine	- Acute toxicity (oral, dermal,
dihydrochloride ACS (NED)	inhalation), category 4
	 Skin irritation, category 2
	- Eye irritation, category 2
	 Skin sensitization, category 1
	 Specific Target Organ Toxicity
	Single exposure, category 3
Orthophosphoric acid	Concentrated solution causes
	severe skin burns and eye damage.