Title	cDNA first strand synthesis		
Protocol Number	MOLBIO20004	Written by	Duha A.
Adapted from	MO Lab and <u>VU</u> & <u>UGA</u> and <u>NEB</u>	Version	1.0
Date created	19 June 2020	Version update	NA

Before starting:

- Use $1\mu g$ of RNA for cDNA synthesis (you could use as high as $1\mu g$ or low as 10 pg in $20\mu L$ reaction)
- Enzymes need to be kept on ice

Reagents:

- Protoscript II Reverse Transcriptase (NEB #M0368)
- dNTPs (10mM)
- Random primers (invetrogen)
- 5X Protoscript II RT buffer
- 10X 0.1 M DTT
- RNAse H

Protocol:

- 1. Calculate the amount of RNA μ L required to achieve 1 μ g (need to equal or be less than 8 μ L).
- 2. For each sample, prepare 2 eppendorfs with a mix of RNA+ dNTPs + random primers as follows:

Component	Volume ($F_v = 10\mu L$)	Volume ($F_v = 20\mu L$)
RNA	1-8 μL	9-16 μL
Random primers mix	1μL (of 60 μM conc)	2μL
dNTPs	1μL (10mM)	2μL
Nuclease free water	For a total volume of 10μL	For a total volume of
		10μL

- 3. For each set of eppendorfs, Label one as 'sample' and the second as 'NC'
- 4. Incubate the eppendorfs at 65°C for 5 mints to denature the primers
- 5. Spin sown the eppendorfs for 5 sec
- 6. Promptly place the eppendorfs on ice for at least 1 mint
- 7. To both eppendorfs add (except for **RT**: it is **ONLY** added to the sample tubes):

For this step, you can create 2 master mixes. One for the samples & the other for the negative controls. For the negative controls, replace RT with water

Component	Volume ($F_v = 20\mu L$)	Volume (F _v = 40μL)
5X ProtoScript II Buffer	4μL	8 μL
0.1 M DTT	2μL	4 μL
ProtoScript II RT (200 U/μl)	1μL	2 μL
Nuclease free water	3μL	6 μL

Component	Volume ($F_v = 20\mu L$) for NC	Volume ($F_v = 40\mu L$) for NC
5X ProtoScript II Buffer	4 μL	8 μL
0.1 M DTT	2μL	4 μL
ProtoScript II RT (200	NONE	NONE
U/μl)		
Nuclease free water	4μL	8 μL

- 8. Since Random Primer Mix is used, an incubation step at 25°C for 5 minutes is recommended before the 42°C incubation.
- 9. Incubate the 20 μl cDNA synthesis reaction at 42-48°C for 1 hr.
- 10. Inactivate the enzyme by incubating at 65°C for 20 minutes.

RNA removal:

- 11. Add 1uL of E.coli RNAseH and incubate at 37 °C for 20 minutes.
- 12. Inactivate RNAse H by heating at 65°C for 10 minutes
- 13. Store the cDNA product at -20°C or proceed to RT-qPCR
- 14. You should not does the cDNA at this stage as the results will be falsely elevated due to the presence of enzymes, templates, primers, etc.